Three-dimensional geometric modeling of the cochlea using helico-spiral approximation
نویسندگان
چکیده
In this paper, the three-dimensional geometry of the human cochlea is modeled by the helico-spiral seashell model. The 3-D helico-spiral model, the generalized representation of the Archimedian spiral model, provides a framework for measuring cochlear features based on consistent estimation of model parameters. Nonlinear least square minimization based algorithms are developed for the identification of rotation, center and intrinsic parameters of the helico-spiral representation. Two algorithms are designed for the rotation axis aligned to the modiolar axis: one is more susceptible in the presence of noise, while the other allows applicability to two-dimensional data sets. The estimated center and intrinsic parameters allow the calculation of length, height and angular positions needed for frequency mapping of multichannel cochlear implant electrodes. Model performance is evaluated with numerically synthesized curves with different levels of added random noise, histologic data and real human cochlear spiral computed tomography data.
منابع مشابه
Effect of replacing cochlea contour with inner ear contour on cochlea dose-volume calculations in conventional 2 dimensional and conformal 3 dimensional radiotherapy of brain
Introduction: Sensorineural hearing loss (SNHL) is one of the possible complications of radiotherapy treatment of brain tumors. The auditory system of patients with brain tumors often is placed inside of radiation field and receives a significant amount of radiation dose resulting in hearing loss. The purpose of this study was to compare contouring and delivery dose to cochlea...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملCochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model.
HYPOTHESIS Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. BACKGROUND Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Compu...
متن کاملThree-Dimensional Finite Element Modeling of Stone Column-Improved Soft Saturated Ground
Installing stone columns in the ground is an effective improvement technique to increase the load bearing capacity and reduce the consolidation settlement of the loose or weak cohesive soils. In addition to the increase in the bearing capacity and reduction in the settlement, stone columns can accelerate the dissipation rate of the excess pore water pressure generated by the surcharge, which ex...
متن کاملThree-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy.
In the cochlea, a high K+ environment in the endolymph is essential for the maintenance of normal hearing function, and the transport of K+ ions through gap junctions of the cochlear epithelium is thought to play an important role in endolymphatic homeostasis. The aim of the present study was to demonstrate the three-dimensional (3D) ultrastructure of spiral ligament root cells and interdental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on bio-medical engineering
دوره 47 10 شماره
صفحات -
تاریخ انتشار 2000